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ABSTRACT
A Process Query System (PQS) has the capability of filtering large volumes of real time data originating from a
field of networked Physical Sensors. Modern air quality monitoring techniques such as Fourier Transform Infra-
Red (FTIR) spectroscopy will eventually provide massively distributed real time contamination data at high
fidelity. As large networks of these sensors are deployed, improved techniques of data retrieval and assimilation
will be required. The case of detecting a diffusion event such as a hazardous chemical plume is considered. In this
scenario, a plume model based on an Ensemble Kalman Filter (EnKF)is submitted to the PQS which manages
multiple hypotheses explaining the current observations. The feasibility of such an application is demonstrated
and results from preliminary simulations are presented.
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1. INTRODUCTION
1.1. Problem Description
Given a diffusion event in a planar space (assuming no wind and an ideal diffusion process) can a network of
chemical sensors identify and locate the source of a distributed diffusion event? (Where distributed means large
plume events originating from a single source being partially detected at multiple sensor locations). Using inverse
diffusion modelling from a set of chemical sensors, a system is desired than can process queries requesting the
origin of of chemical plume and return likely hypotheses. Most efforts in plume modelling consider the forward
prediction problem - we attempt to examine the inverse problem. The desired system will report plume origin
as numerous hypotheses each having likelihoods.

1.2. PQS Framework
In future sensor networks, chemical concentration data will generally be accessible in real time. Unlike modern-
day data mining, future data retrieval will need to function on high volume real-time data streams. In the case
of a chemical attack, latency introduced by data mining must approach seconds or minutes as opposed to hours
or weeks. This creates a new generation of data mining problems. With the added data loads introduced by
monitoring continuous real time data, an intermediate layer of message handling is required to filter and broker
data without losing information of interest.

PQS is the presented as the next generation of information retrieval, able to identify and retrieve data
based on process descriptions. The comparison of PQS to traditional data retrieval has been compared to the
evolution from Aristotelian to Newtonian logic (Cybenko et al). As an example application of PQS, chemical
plume tracking illustrates how to rapidly filter, assimilate, and fuse large amounts of real time sensor data.
Such capabilities will be needed to monitor water supplies, chemical weapons, and terrorist attacks. The city of
Washington DC has installed a hard wired system to monitor downtown and the metro for hazardous airborne
materials - but the need exists for a regional and national network capable of real time information exchange
and exploitation.

PQS, rather than being a single application, is designed as a framework to accommodate domain experts’
development of process models. By abstracting data collection, filtering, subscription, and pre-processing - the
expert can focus on building better models. PQS has thus far been demonstrated with vehicle target tracking,
and Cyber worm detection. Plume tracking was selected as a problem set to demonstrate the extreme versatility
of PQS.
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1.3. Existing Approaches

The problem of data assimilation in sensor networks has recently been addressed in the communities of col-
laborative signal processing (Akbar Illinois), sensor network databases(Gehrke Cornell), as well as the TinyDB
project at The University of California. The CASA project directed by the University of Massachusetts Amherst
seeks to create a distributed collaborative adaptive senor network for much denser sampling of the atmosphere
when are where needed. Holzhauer et al with the Air Force Research Laboratory (project CPAKS) have begun
the integration of plume simulations into a command and control schema based on agent technology.

While PQS may eventually work in conjunction with these existing technologies, the main differentiation is
the step to true process modelling and a new generation in the data retrieval. By allowing the end user to build
custom process descriptions a new generation of efficiency is enabled.

2. INVERSE DIFFUSION PROBLEM

The heart of the plume source detection challenge is a classic inverse problem: Given a set of observations that
may not correspond to a unique set of events, how can the best possible guess be made about the hidden states?

The classic diffusion equation (Ficks Law )1 describes the phenomenon of particle migration from areas of
high to low concentration. This differential equation, identical to the “Heat Equation” can be solved numerically,
however the numerical approach yields discontinuities and becomes problematic for discontinuous media. For this
reason monte carlo methods are often used. For example, the identical results can be derived using a particle
random walk method. In the following section the relevant analytical solutions of the this 2nd order partial
differential equation (PDE) are presented and used to derive useful geometric results for plume source inversion.

2.1. Relevant Solution of the Diffusion Equation

Ficks Law states:
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Because this is a 2nd order PDE, we need at least 2 initial conditions: typically fixed end-point concentration,
or fixed flux. Using the boundary conditions: c(0, t) = c(1, t) = 0 the concentration at the end points (0 and
1) of the normalized graph space are held at zero. This approximation works for the case of plume tracking
assuming the selected grid space is large compared to the plume size, and that the plume does not fully migrate
to the edges. The 1D Solution:
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Where M is amount of diffusing matter released per distance, D is the diffusion constant, and x the spatial
variable. The same solution in 2D:

r(x, y, t) =
M

4πD(t− t0)
exp
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]
(4)

where

σ2 = 2D (t− t0) (5)

Which means the variance of the plume distribution is linear with respect to time, but σ =
√

2Dt, so the
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Figure 1. Ideal Particle concentrations which begin as a point source follow widening Gaussian distributions

spreading increases with time, never stopping but slowing down. The 95% perimeter of particles moves as
√

t
from the plume source. The characteristic solutions of 1D case for increasing times are plotted in Figure 1.
Although this description of plume boundaries may be sufficient, very toxic pollutants may require the tracking
beyond the bulk of the material (3σ). A more strict limit (6σ) or .13% on each side of the plume center may be
required. Better, a random walk model can follow the precise edge of a distribution.

2.2. Inversion of Concentration Observations

Using the 1D diffusion equation solution and holding position constant provides the predicted observations of a
chemical plume sensor as a function of time. This typical response curve is illustrated in Figure 2. Assuming
the plume release is instantaneous and finite, the time of plume release may be described by the variable T0.
Depending on the distance of the chemical sensor to the plume source, a different concentration rise time will
occur - until the concentration reaches a maximum at time Tmax. Assuming a single plume source, we observe
only a single local maximum in concentration, where Tmax occurs at the time identified by∂c

∂t = 0.

Tmax characterizes the distance from a sensor to the plume origin, assuming directionally uniform diffusion.
Another interesting parameter is the ratio between Tmax and fall times, where fall time Tfall is defined as the
time required for concentration to be restored to a normal stationary level from the Tmax level. As distance from
the source becomes large, this ratio R changes characteristically with sensor-source separation distance.

R =
Tmax

Tfall
(6)

Inserting this value for Tmax into the diffusion equation solution along with position xn, yn for sensor n provides
the maximum observed concentration at sensor n. This maximum concentration at sensor n is defined as Maxn.
In the 1D case an identified Tmax corresponds to a source probability distribution centered around two points
equidistant from the sensor. When extending to 2D, an identified Tmax produces a source probability distribution
around a circle of radius r centered at xn, yn for sensor n. In the non-ideal case this distribution would form a
ring with an error term εn for sensor n describing the ring thickness. This simple inversion procedure allows for
an estimation of distance between sensor and plume source in 2D. Goals for future work include accounting for
non-uniform diffusion and external forces such as wind.

2.3. Inverse problem in 2 Dimensions

Assuming a 2D scenario of ideal Fickian diffusion a number of fundamental properties useful for inverse diffusion
may be calculated. We also assume a single fixed plume source. We can estimate Tmax based on time delay
between first observed increase and the time of maximum observed amplitude.

If more than one sensor is available, collaboration allows the elimination many possible source locations. The
2D approach is similar to the geometry used in the Global Positioning System (GPS) which leverages estimation



0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

0.5

1

1.5

2

2.5

3

3.5

4

time

C
on

c(
t)

 a
t f

ix
ed

 p
oi

nt

Tmax

Figure 2. Characteristic Concentration as a Function of time observed from a fixed point

of distances to multiple satellites, and then finds regions of overlap between spheres. Based on concentration
waveforms observed at individual nodes, path lengths to the plume sources are estimated. This pool of path
lengths can then be exploited to enhance source location estimation.

We assume in these preliminary simulations that the time of initial release is known. (Which allows the
calculation of Tmax). Obviously in an application setting this assumption would not be valid, future work will
investigate the estimation of T0 based on the concentration rise time parameters. For example, the time between
first observation above threshold and the time of the local maximum. In addition, agents within the sensor
network may be able to share synchronization information providing more accurate T0 knowledge throughout
the network.

The general algorithm for finding a plume source in 2 dimensions requires:

• M = Total plume mass

• find ∂c
∂t = 0, solve for Tmax

• Plug in this Tmax to solve for Maxn = r (x, y, Tmax)

• Calculate Maxn = M
L2

n
, solve for Ln

• Solve system of ratios iteratively

• Ln = Length from source to each n sensors results

• Combining solved values of Ln can find x0, y0

With the above method, it is possible to solve for the 2D source location x0, y0 given 3 sensors of known
location xn, yn, where the length Ln represents the distance between each sensor and the source. (See Figure
3). Using the ratio equation: (

Max2

Max1

)
=

(
L1

L2

)2

(7)

we can iteratively find all the lengths in the sensor field that have detected an event originating from the same
source. In N dimensions, this approach requires knowing the location of N + 1 sensors for determination of the
plume source.
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Figure 3. N-dimension plume source problem. Solving a simultaneous system of equations allows the calculation of L

Although these ideal geometric approaches may only allow crude approximations after assumptions are later
removed - any regions that can be removed from the initial probability distribution will greatly enhance the
performance of the EnKF.(refer next section)Once the geometric inverse algorithm has provided a diminished
set of possible initial plume states, these constrained sets can be introduced as initial guesses (prior estimates)
to a Monte Carlo Method known as EnKF.3

3. ENSEMBLE KALMAN FILTER IMPLEMENTATION

3.1. Introduction

We seek inverse methods whose implementations are forward model independent. One such family of schemes are
Monte Carlo linear minimum variance methods, most widely used amongst these is the EnKF. We demonstrate
the use of the EnKF and ensemble smoother (ES) with an application to chemical plume source detection. The
advection setting is an urbanized circulation.

Data assimilation of large sets typically has the problem that plentiful observations (such as temperature)
involve only a subset of the total variable space. Sensing units that measure a large number of atmospheric
variables are uncommon and often separated by great distances. A recent3 method introduced by Evensen to
handle this situation is the Ensemble Kalman filter (EnKF). The EnKF applies a Markov Chain Monte Carlo
method in which an ensemble of model states represent the probability density. A large cloud of model states,
represented as points in state apace, corresponds to a specific probability density function. Integration of these
model states in time according to the particular model dynamics can be used to estimate future probability
densities of the system.

Leveraging the geometric diffusion analysis performed in section 2 reduces the total number of initial states
involved in the forward integration. By reducing the total number of initial sates based on current observations
(ruling out certain regions) the brute force forward calculation can be improved. For example, the concentration
observations arriving at sensor n require the plume source to be located within radius r - creating a unique
constraint disc centered at n. If a second sensor m also has a unique constraint disc centered at m - the
constraint set produced as an intersection of n and m produces a greatly reduced number of initial states that
must be integrated.

For algorithm testing, an EnKF simulation was developed in MATLAB which was able to predict plume
source location based on distributed sensor observations.

3.2. EnKF Notation

• ψ(x, t) model chemical concentration

• ψ0(x, 0)initial concentration

• ψt true concentration



Figure 4. An ensemble of possible states can be represented in an n-dimensional phase space as a cloud of points, where
each point represents an individual state.3

Figure 5. Two time steps evolve in an ensemble of initial phase space states. The EnKF integrates these individual
points within an ensemble according to the particular process model. In this case the ensemble size (number of model
realizations) remains fixed as the ensemble variance increases.



• H measurement operator d = Hψt + ξ

• d vector of data (concentration measurements)

• V velocity field

• D diffusion field

3.3. Ensemble Smoother
We seek to identify initial concentration from data recorded at fixed positions. The chemical concentration is
assumed to evolve according to an advection diffusion equation:

∂ψ

∂t
+ V · ∇ψ −∇D · ∇ψ = 0 (8)

We propose to solve the estimation problem with an ensemble smoother. The method is computationally expen-
sive but provides useful error statistics and is simple to implement. (Alternatively one could solve the problem
with as adjoint approach to the two dimensional advection diffusion equation). The ensemble smoother is a
Monte Carlo approach to error variance minimizing estimation. The apriori model error distribution is defined
implicitly through a stochastic perturbation model for the inital conditions and circulation. It is assumed that
the distribution over intial conditions is Gaussian with some spatial structure.

A finite number, n, initial conditions are simulated from the prior model to create an ensemble of initial
states {ψ0

i }. The forward model is then run from each of the initial states to form the ensemble forecast:

{ψi} = {f(ψ0
i )} (9)

, where f represents the forward model operator.

Let H represent the measurement operator for the insitu data cotemperous with the model run. We estimate
a posterior distribution of inital conditions through the usual ensemble smoother method:

ψ0,posterior
i = ψ0

i + PHT (HPHT + W )−1(d−Hψi), (10)

where P is the model error covariance matrix, d is the vector of observations and W is the observational error
covariance matrix. We approximate the matrix HPHT with the ensemble covariance of the model measurements:
di = Hψi + ξi. ξi is a random variable simulated from the measurement error model (zero mean Gaussian with
covariance W ).

HPHT = Cd,d =
[
cd,d
k,j

]
=

[∑

i

(dk
i − d̄k)(dj

i − d̄j)
n− 1

]
(11)

where d̄ =
∑

i
di

n . Likewise the matrix PHT is approximated by it’s ensemble analog:

PHT = Cψ,d =
[
Cψ,d

k,j

]
=

[∑

i

(ψk
i − ψ̄k)(dj

i − d̄j)
n− 1

]
(12)

where ψ̄ =
∑

i
ψi

n It should be noted that PHT is only computed one row at a time so that memory use of the
analysis step is independent of model size.

3.4. Prior model for initial conditions
Central to any smoother is specification of the apriori distribution over the model. In this case the distribution is
defined implicitly through a model of perturbations to the initial and boundary conditions. Define the covariance
function:

C({x1, y1}, {x2, y2}) = e
−(∆d

λd
+∆b

λb
) (13)

where
∆d =

√
(x1− x2)2 + (y1− y2)2, and ∆b = |H(x1, y1)− (H(x2, y2)|.

To generate the perturbations to the initial conditions we employ the following approach:
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Figure 6. Simulation results of EnKF one dimensional plume source estimation.

1. construct the covariance matrix C for all horizonal nodes.

2. compute B = cholsky(C)

3. to generate one initial perturbation, generate a random field ξ = BT ς, where ς are white standard normal
random vectors of length ηnodes. Then let Ti(x, y) = Tmu(x, y) + νξ(x, y).

3.5. EnKF Plume Simulation

A One dimensional EnKF simulation developed in MATLAB illustrates the ability to invert sensor measurements
and recover the source location. For programming simplicity a 1D vector space was used, normalized to the range
(0,1). A random plume is generated (initial distribution) with center selected randomly in the range (0.2 - 0.8).
An initial distribution corresponds to the plume particle density distribution at the time of plume release, Tmax.
This initial distribution ensemble is integrated forward in time, and generates sensor observations at regular
intervals of x=(0.1, 0.3, 0.5, 0.7 and 0.9.) (Figure 7) Random initial conditions are then run through the same
forward model to compute the ES estimate - which closely matches truth. The initial (prior) estimate distribution
results from the possible starting locations of the plume. (Therefore 0 above 0.8 or below 0.2). The posterior
result (ES estimate) in this case matches the truth extremely well. Positive and negative fluctuations in the
posterior estimate are a byproduct of introduced noise and error in the estimator data.

4. INTEGRATION WITH PQS

We focus on diffusion events, especially chemical weapons, fires, or other aerosol producing events. These same
methods could apply to other diffusion events such as heat or water pollutant tracking. The PQS has modular
models, EnKF will serve as one of many. As the PQS system has the infrastructure readily available (Network
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Figure 7. EnKF based plume source estimation with constraint sets used as initial guesses to reduce the total number
possible source locations. Sensor observations are directed to the PQS system for filtering, assimilation, and hypotheses
generation.

layers, model servers, message servers) to abstract the lower level system from the end user, more time and
energy can be focused on the building of accurate models. Implementation of the EnKF model illustrates PQS
can accommodate not only internet worms, HMM pattern recognition, and Track estimation - but also processes
describing plume movement and origin. EnKF implementation further demonstrates the versatility of the PQS.

Submission of plume tracking PQS queries requires a plume query language (PQL) or graphical interface.
This PQL defines a language or structure in which models are designed and prepared for submission. A proposed
method for describing plume systems utilizes descriptive models of plumes. For example, a PQL must contain
descriptions of plume shape, size, severity, and kinematics. Schemes for deconstruction of a complex system
include these approaches: structural, ontological, and semantic.

One relevant industrial approach to flexible simulation design for complex logistical systems entails building
descriptive models for all possible elements within the system.4 The design of a reusable factory simulation
package would require identifying three elements: objects, actions, and properties. Objects correspond to all
possible entities capable of action. Actions describe all possible activities which the actors are capable of under-
taking. Properties provide descriptive information about objects, actions, or other properties. The aggregate of
these three elements provides a reusable generic meta-model in which queries can be constructed. With such a
meta model, end users can design and submit high level queries descriptive of any possible scenario involving all
plume elements. The following table illustrates a conceivable meta-model used to develop a PQL, including a
few sample objects, actions, and property elements.
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ware)and passing query results to end users. The EnKF would post subscriptions for required plume data to MOM, and
manage plume hypotheses with associated likelihoods.

Objects Actions Properties
single static source disperse mass

single moving source rise volume
perimeter fall current location

center of mass origin location
direction of movement

predicted future location
temperature

turbidity
velocity

Once a rigorous PQL has been developed, the next critical component of the EnKF module development will
include hypothesis management. Conceivably even a well formed query could produce large numbers of matching
ambiguous results. A ranking system must provide be able to track plume hypotheses as they evolve temporally.
The most apparent techniques to apply derive from the literatures of multiple hypothesis tracking.5 Methods such
as Viterbi decoding may be implemented for managing exploding hypothesis sets. Historical records of plume
hypotheses will be maintained as continuous data arrives from the sensor field. This will allow new hypothesis
creation or irrelevant track elimination. Maintenance of unlikely hypotheses becomes increasedly important if
detection of slow progressive events is desired.

5. FUTURE WORK

In the near future, a networked 2D simulation will create a 2D random walk model which generates a random
plume field using existing PQS experimental networking hardware and software. Given sensor locations, the
system will submit these observations to the MOM and PQS kernel. Using observations subscriptions PQS will
answer queries from end users. This includes development of PQL for Plume queries.

Although the current focus is not on physical model precision, a greater variety of data sources would enhace
our results. Currently all data used for model testing is simulated. Future versions may include historical data,
or analysis of near real time data such as pollution in air or water.

Future models may also account for more complex flow regimes such as anisotropic diffusion (cross wind),
high advection (wind or currents), as Diffusion rates differ in the vertical plane compared to the horizontal plane.
This effect is evident by watching an emissions smokestack. Multi Dimensional models that include barriers and
discontinuities such as geography and buildings will add additional realism.
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